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Abstract

Simultaneous HPLC separation of the enantiomers of 3-benzyloxy-2-methyl-1,2-propanediol and the corresponding
3-benzyloxy-2-methyl-1,2-propene oxide could be accomplished on amylose derived Chiralpak AD switching between 10%
2-propanol and 3% 1,2-dimethoxyethane as polar modifier in n-heptane.  2001 Elsevier Science B.V. All rights reserved.
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1. Introduction (S)-1 [1] we decided to investigate the enzymatic
resolution of O-benzyl protected 2-methylglycidol 2,

Carbaldehyde 1, which is an important building which can be easily converted to 1 (Fig. 1).
block [1], can be prepared starting from mannitol [2]. Protected hydroxymethyl epoxides are common sub-
This approach has the disadvantage of leading only strates in biotransformation steps [6]. The develop-
to the (R)-enantiomer (six steps, total yield 13%). A ment of an analytical method to determine the
biocatalytic kinetic resolution by lipase led to high enantiomeric excess of epoxide 2 and diol 3 posed a
enantiomeric excess (ee.95%) but again only with problem. Previous successfully employed gas chro-
low yield [3]. Sharpless epoxidation of 2-methyl-3- matographic methods to analyze chiral analogues
propenol [4] and dihydroxylation of 3-benzyloxy-2- containing a secondary carbon in position 2 [6] or
methylpropene [5] lead to products with rather low tertiary substituted analogues containing a longer
enantiomeric excesses (ee585% and 77%, respec- aliphatic chain [7] failed in the case of both benzyl
tively). In the course of our investigation of an ethers 2 and 3. The gas-liquid chromatographic
enantioconvergent chemo-enzymatic way to prepare separation of the enantiomers of simple glycidol and

glycerol analogues 4 and 5 (the latter derivatized as
carbonate or acetonide) is known [8] but high-per-
formance liquid chromatographic separation of 2 and*Corresponding author. Tel.: 143-316-3805-330; fax: 143-
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2.2. Chromatography

GLC measurements were carried out on a Varian
3800 gas chromatograph equipped with a flame
ionization detection (FID) system using H as the2

carrier gas. Investigated columns were: Chrompak
Chirasil-dex CB (b-cyclodextrin directly bonded to a
dimethylpolysiloxane; 25 m30.32 mm I.D., 0.25 mm
film), ASTEC Chiraldex B-TA column (b-cyclo-
dextrin, modified as 2,6-di-O-pentyl-3-trifluoroacetyl
derivative; 30 m30.25 mm I.D.), ASTEC Chiraldex
G-PN (g-cyclodextrin as the 2,6-di-O-pentyl-3-prop-
ionyl derivative; 30 m30.25 mm I.D.), ASTEC
Chiraldex G-PH [g-cyclodextrin as (S)-2-hydroxy-
propyl methyl ether; 30 m30.25 mm I.D.].

HPLC analyses were performed on a Jasco system
containing a PU-980 pump equipped with an MD-
910 multiwavelength detector. Investigated columns
were: Daicel Chiralpak AD (25034.6 mm), Daicel
Chiralcel ODH (25034.6 mm), Merck (3S,4R)
Whelk-O1 (25034 mm).

Hold-up times were determined using 1,3,5-tri-
tert.-butylbenzene. Separation parameters for 3 wereFig. 1. Structures of carbaldehyde 1 and the investigated benzyl
calculated as started from the moment of solventethers.
switch in order to obtain relevant numbers.

oxide [9] and 2-methylglycerol as 1-(4-methoxyben-
zoate) [10] has been reported. 3. Results and discussion

In this paper we describe our results using gas-
liquid chromatography (GLC) and high-performance 3.1. GLC approaches
liquid chromatography (HPLC) chiral stationary
phases and the optimized simultaneous liquid chro- Racemic secondary carbon containing compounds
matographic resolution of 2 and 3 on amylose 4 and 5 could be separated via gas chromatography
derived Chiralpak AD. using literature conditions [8]. However, tertiary

analogues 2 and 3 resisted several attempts on all
four investigated columns (see Experimental). We
could separate the enantiomers as 1-methoxy deriva-

2. Experimental tive 3a on Chirasil-Dex [6], but the method was not
practical due to many side products.

2.1. Chemicals and reagents 3.2. HPLC approaches

Synthesis of 1 [2], 2, 3 and 3a [6] has been Attempts failed to separate 2 and 3 on Pirkle-type
reported. CSP Whelk-O1, which has shown previously en-

Compound 4 was obtained from Sigma–Aldrich antioseparation abilities for compounds with these
9 9(Vienna, Austria). n-Heptane, 2-propanol (for liquid types of functional groups. [2: k 50.65; 3: k 51.05;2 2

chromatography) and 1,2-dimethoxyethane were ob- conditions: n-heptane–2-propanol (90:10), 0.5 ml /
tained from Merck (Darmstadt, Germany). min, 208C]. Better results were obtained using
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cellulose 3,5-dimethylphenylcarbamate derived Chi- glyme), far better results for epoxide 2 could be
9ralcel ODH. Diol 3 was partly separated [k 51.61, obtained, especially after careful optimization of the2

9a51.08, R 50.88; conditions: n-heptane–2-pro- temperature [Fig. 2B; k 53.50, a51.14, R 51.68;s 2 s

panol (90:10), 0.5 ml /min, 208C], epoxide 2 re- conditions: n-heptane–monoglyme (98:2), 0.5 ml /
9mained unresolved [k 50.36; conditions: n-heptane– min, 108C].2

2-propanol (95:5), 0.5 ml /min, 208C]. Use of less In screening procedures it is highly desirable to
2-propanol as polar modifier did not improve results. observe both, educt and product simultaneously. This

Amylose 3,5-dimethylphenylcarbamate derived could be accomplished by using a solvent switching
Chiralpak AD showed the relatively best perform- method starting with the less polar mobile phase

9ance: optimized flow and temperature conditions for containing monoglyme resolving 2 (k 52.49, a52

9diol 3 resulted in baseline separation [k 52.22, a5 1.13, R 51.51) and leaving the chiral diol 3 at the2 s

1.12, R 51.85; conditions: n-heptane–2-propanol head of the column. Changing the mobile phases

(90:10), 0.5 ml /min, 208C]. However, epoxide 2 modifier to 2-propanol and optimizing flow-rates it
9remained poorly separated [Fig. 2A; k 50.96, a5 was possible to elute baseline separated enantiomers2

91.07, R 50.3; conditions: n-heptane–2-propanol of diol 3 [k 51.74, a51.16, R 51.31; conditions:s 2 s

(98:2), 0.5 ml /min, 108C]. 108C; 0-35 min: n-heptane–monoglyme (97:3), 0.5
Changing the polar modifier from routinely used ml /min, 35-45 min: n-heptane–2-propanol (90:10),

2-propanol to aprotic 1,2-dimethoxyethane (mono- 0.75 ml /min, 45-80 min: n-heptane–2-propanol

Fig. 2. Effects on the separation of racemic epoxide 2 using 2% Fig. 3. Separation of epoxide 2 and diol 3 on Chiralpak AD using
2-propanol (A) or monoglyme (B) as polar modifier in n-heptane optimized conditions (A) and slightly different conditions (B) (see
(Chiralpak AD, conditions see Results and discussion). Results and discussion).
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(90:10), 0.5 ml /min, Fig. 3A]. We can show in Fig. References
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